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ABSTRACT 
 

The Alekseevski-Tate equations have long been used 
to predict the penetration, penetration velocity, rod velocity, 
and rod erosion of long-rod projectiles or kinetic-energy 
penetrators [1].  These nonlinear equations were originally 
solved numerically, then by the exact analytical solution of 
Walters and Segletes [2, 3].  However, due to the nonlinear 
nature of the equations, the penetration was obtained 
implicitly as a function of time, so that an explicit functional 
dependence of the penetration on material properties was not 
obtained.  Walters and Williams [4, 5, 6] obtained the 
velocities, length, and penetration as an explicit function of 
time by employing a perturbation solution of the non-
dimensional Alekseevski-Tate equations.  Algebraic equations 
were obtained for a third-order perturbation solution which 
showed excellent agreement with the exact solution of the 
Tate equations for tungsten heavy alloy rods penetrating a 
semi-infinite armor plate.  The current paper employs this 
model to rapidly assess the effect of increasing the impact 
velocity of the penetrator and increasing the armor material 
properties (density and target resistance) on penetration.  This 
study is applicable to the design of hardened targets. 
 

INTRODUCTION 
 

The Alekseevski-Tate Equations [1] hereafter 
referred to as the Tate equations, have long been employed to 
predict the penetration of long-rod, kinetic-energy penetrators 
impacting targets.  Typically, these equations are solved by 
numerical integration techniques or by using the exact solution 
developed by Walters and Segletes [2, 3].  However, due to 
the nonlinear nature of these equations, the exact solution 
yields the penetration as an implicit function of time.  An 
accurate, explicit solution to these equations, for each of the 
pertinent variables (penetration velocity, penetrator length, 
penetrator velocity, and penetration depth) was obtained by 
Walters and Williams [4, 5, 6] using a perturbation technique.  

The analytical nature of the resulting equations provides a 
simple (i.e., non-numerical) solution of the governing 
equations and clearly reveals the interplay of the various terms 
in the governing equations. This provides insight as to the 
importance of specific penetrator and target material 
properties.  A perturbation solution was obtained for the 
following equation set [1, 2]: 
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In these equations, v is the penetrator (or rod) 

velocity, u is the penetration velocity, p is the penetration, l is 
the penetrator length, t is the time after impact, RT is the target 
strength term, YP is the penetrator strength term, ρ represents 
the density, where the subscript P stands for penetrator and 
subscript T represents the target.  First, the equations are 
normalized and the method of normalization will depend on 
the input conditions; namely, the ρ values, the initial velocity, 
and the strength terms. For the usual case of interest to 
ballisticians studying kinetic- energy penetrators impacting 
armor targets, the following normalization parameters are 
introduced: 
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where Vi is the impact velocity, L is the initial penetrator 
length, and V, U, P, λ, and τ are the dimensionless variables, 
while μ ,α, β, and ε are the dimensionless constants.  The 
parameter β is used to normalize the time.  The constant ε is 
the perturbation parameter.  

 
The normalized equations become 
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The perturbation method [4, 5, 6] involves letting 
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For example, if a third-order perturbation solution is obtained, 
terms of the order of ε to the fourth power and higher are 
neglected.  Hence, the accuracy of the solution depends on the 
magnitude of ε and the number of terms in the above equation 
set. 

 
One can substitute the expressions for V, U, λ, and P (Eqn. 11-
14) into the nondimensional equation set and obtain, to order 
zero (considering only terms involving ε0) , the following set: 
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where the initial conditions at 0=τ  are , 1)0(0 =V

1)0(0 =λ . 
The solution is straight forward: 
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Note that this solution is that of the traditional hydrodynamic 
limit, where neither the target and penetrator strengths appear, 
and only penetrator and target densities determine the solution.  
Thus, the perturbation solution introduces strength effects, and 
the validity of these perturbations depend on the strengths 
being small relative to the normalization parameter (penetrator 
density times the square of the impact velocity). 
 

We proceed in a similar manner and next consider 
terms of order ε, etc.  Then one can calculate V0, V1, V2, V3, 
and the corresponding U, P, and λ expressions.  These 
expressions are given in Walters and Williams [4, 5, 6] 
through the third order.  The emphasis of the current paper is 
to exploit the influence of the target parameters on the rod 
penetration so the final expression for penetration is given 



below.  Analogous equations for the rod velocity, penetration 
velocity, and rod length may be found in [4, 5, 6]. 
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RESULTS AND DISCUSSION 
 
The normalization scheme used is deemed appropriate for 

cases of interest to ballisticians, namely heavy-metal, long-rod 
penetrators made of tungsten alloy or depleted-uranium 
penetrating a semi-infinite armor steel target.  The third-order 
solution for P, with comparison to the exact Alekseevski-Tate 
equation solution is shown in Fig. 1.  In this case, Vi = 2 km/s, 
L = 0.5 m, ρP = 17,600 kg/m3, YP = 1.0 GPa, ρT = 7,800 kg/m3, 
and RT = 5.5 GPa. The perturbation parameter using these 
values is  ε = 0.0142, which is much less than one. Terms with 
a coefficient of ε4 and higher were neglected.  The agreement 
for the third-order perturbation solution is excellent for 
penetration.  Figure 1 is difficult to discern due to the fact that 
the curves for the first-order perturbation solution, the third-
order perturbation solution, and Tate are in close agreement.  
As expected, the third-order perturbation solution is more 
accurate than the first order.  In fact, at a time near the end of 
the penetration process, say 500 μs, the penetration depth 
deviates from the exact solution  by 0.43% for the first-order 
perturbation solution and by 0.18% for the third-order 
perturbation solution.   

 
 

 
 
Fig.1.  Penetration depth for a first-order perturbation solution, a 
third-order perturbation solution, and the exact Tate solution.  
This case is for a tungsten rod impacting a steel target at an 
impact velocity of 2000 m/s. 
 
 

The perturbation equations can be used to determine 
the influence of material properties on penetration.  The target 
properties are varied for a given penetrator.  Thus, the 
perturbation parameter, which depends on the penetrator 
properties, remains small.  Figure 2 plots the final penetration 
into semi-infinite RHA (rolled homogeneous armor) with the 
same input conditions as in Fig. 1 except the target resistance 
is allowed to vary from 1 to 20 GPa.  Figure 3 returns the 
target resistance to its original value of 5.5 GPa and allows the 
density of the target to vary from 1,000 to 20,000 kg/m3.  If 
the target resistance is doubled for example, the penetration 
decreases by a 35.5%.  If the target resistance is increased by 



10%, the penetration decreases 4.4%, all else being equal.  
From Fig. 3, if the density is doubled from 7,800 to 15,600 
kg/m3, the penetration decreases by 21.0%.  If the target 
density increases by 10%, the penetration decreases 3%.  
Other estimates as to the change in target resistance or density 
can be estimated from Fig. 2 and 3, respectively.  Figure 4 
shows the effect of increasing the impact velocity giving the 
characteristic S curve.  The initial velocity required to achieve 
penetration is 715 m/s obtained from equation (1) when u = 0.  
The penetration increases by 24.2% if the impact velocity is 
increased from 2.0 km/s to 3.0 km/s.  The pentration levels off 
at high velocities.  Note that the third-order perturbation 
solution and the exact solution to the Tate equations are in 
good agreement.  The first-order perturbation solution is not as 
accurate.  

 
The purpose of this study is not to challenge the validity 

of the Tate equations.  The Tate equations have been 
compared many times with experimental data and good 
agreement was obtained.  Often the YP and RT   values are 
chosen to provide agreement with the experimental data.  The 
intent is to indicate that an explicit solution is available that is 
accurate when compared to the exact or the numerical 
solution.  Thus, a simple spreadsheet could be made to 
estimate the solutions very quickly for different material 
combinations. 

 
 

 
 
Fig.2. Final penetration into semi-infinite RHA target as a 
function of target resistance. 
 
 
In general, a few comments are in order.  All equations 
contain a term like ln (1-τ).  Thus, a singularity occurs at 

 1=τ or ( ) s
V

Lt
i

μ
μ

μ 5.6251
=

+
=  for the case described, and t 

must be less than this value.  As this singularity is approached, 
deviation from the exact solution occurs. This occurs where 
the rod length and the velocity are both approaching zero 
simultaneously.  Note that as the rod length approaches zero 
in the Alekseevski-Tate equations a singularity occurs.  
However, as long as the singularity is not approached, the 
solution is accurate.  
 

 
 

Fig.3. Final penetration into semi-infinite RHA target as a 
function of target density. 
 
 
 

 
 
Fig.4. Final penetration into semi-infinite RHA target as a 
function of penetrator impact velocity. 
 

 
As previously mentioned, the perturbation parameter 

must be much less than one.  The value of ε used in the above 
equations implies a small penetrator strength or .  
If this is not the case, for example, for a soft target ( i.e., small 
R

2
iPP V Y ρ<<

T), the equations can be normalized with 
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This is similar to our previous set of equations and thus 
follows the same solution scheme. 

 
 

Note that the normalization scheme was obtained by 
dividing the first equation by ρp and defining μ2 to be ρT/ρP.  
Alternately, one could divide the equation by ρT and define μ2 
to be ρP/ρT. 
Other normalization schemes are possible, namely if the 
nondimensional variables are defined as 
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cases the absolute value of Σ  is used.  The equation set 
becomes 
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ε  is chosen to be the perturbation 

parameter. Again, the above set of equations is very similar to 
the original set of equations and thus follows the same 
solution scheme.  The normalization scheme or equation set 
chosen will depend on the input conditions (known initial 
values) and the requirement to keep ε << 1.  Also, it is 
advantageous to make the time where the logarithmic 
singularity occurs (τ = 1) as large as possible.  
 

Conclusions  

A third-order perturbation solution of the Alekseevski-
Tate equations was used to assess the influence of certain 
target material properties on penetration into armor.  
Agreement with the exact solution is excellent for a tungsten 
rod impacting a semi-infinite steel target at a velocity of 2.0 
km/s.    In this study, the impact velocity was varied to yield 
the well-known S curve behavior.  The target resistance was 
varied and shown to decrease penetration by 35.5% if the 
resistance was doubled.  Also, the effect of increasing the 
target density was illustrated where doubling the target density 
decreased the penetration by 21%.  In addition, alternate forms 
of the normalization of the pertinent equations are investigated 
to obtain a perturbation parameter much less than one for 
various penetration problems depending on the input 
conditions, namely the target and penetrator densities, 
strengths, and initial impact conditions. The current third-
order solution is expressible as an algebraic equation, 
amenable to a spread sheet or simple calculator evaluation to 
accurately assess the effects of the various material properties 
appearing in the equations. 
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